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Introduction

The aim of this work is to construct and compare several classifiers that
perform document classification into two categories. For the classification
are used data from Reuters and the classifiers are constructed using the
system R.

This text is divided into 4 chapters, excluding this one. Chapter 2 con-
tains a description of chosen datasets including their main characteristics
and information about techniques used to pre-process the documents.

The description and some features of used classifiers are briefly presented
in Chapter 3.

Chapter 4 includes the results of performed experiments and their com-
parison. The results are presented in the tables along with a short commen-
tary of interesting values.

Chapter 5 includes the main conclusions of this assignment.
In Appendix is attached used source code for R.
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Preprocessing

The preprocessing phase of the text classification converts the original tex-
tual data into a representation suitable for classification algorithm, where
the most significant text-features are subsequently identified. This phase is
the most critical and complex process that leads to the representation of
each document by a select set of index terms. The main objective of prepro-
cessing is to obtain the key features or key terms from text documents and
to enhance the relevancy between word and document and the relevancy
between word and category [10]. The text data are usually characterized
by high sparsity, hence a reduction of the dimension or feature selection is
often necessary to execute learning algorithm considering time complexity
[13].

Used techniques

To improve outcomes are used following preprocessing techniques from the
library tm in the system R.

• Strip white spaces

• Convert words to lowercase

• Remove stopwords – frequent words that carry no interesting informa-
tion (i.e pronouns, preposition, etc.) [5]

• Remove punctuation

• Remove numbers

• Find frequent terms

The last step is performed for several values to see how the accuracy,
recall and precision score is changed depending on the number of features
and considering also time complexity.
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Dataset

In this assignment is used the simplified Reuters-21578 dataset (prepared
by J. Knotek). The simplified Reuters-21578 dataset contains seven cat-
egories (coffee, crude, grain, interest, money-fx, sugar and wheat) and is
organized into folders, where each folder corresponds to one category and
each document of the category is in one file.

Since this assignment requires classification into two categories it was
necessary to chose exactly two types of documents. The chosen categories
for the experiments are wheat and crude. The category wheat contains 208
and the category crude contains 334 text documents.

The documents in each category are split into a training set (70%) and
into a testing set (30%). The crude training and testing sets include 233
and 101 documents, respectively. The wheat has 145 training documents
and 63 testing documents.

In the following table is shown how the count of terms is changed after
particular steps of preprocessing. The sparsity after application each of the
algorithm indicated in the table was 99%.

Algorithm Number
of terms

Sparse
entries

Non-
sparse
entries

Before preprocessing 12959 6963012 60766

Strip white spaces 12959 6963012 60766

Convert words to lowercase 12959 6963012 60766

Remove stop words 12131 6530004 44998

Remove punctuation 8512 4572836 40668

Remove numbers 7144 3834160 37888
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Classification

The goal of text categorization is to classify documents into a certain number
of predefined categories [12]. Text classification has many applications, e.g.
spam filtering, document organization and retrieval, or news filtering and
organization [11].

The main ideas of algorithms for text classification available in R pack-
ages and used in this assignment are following.

Decision Trees (DT)

• R library rpart

The classification tree is built to predict category for input document. It
works by recursively splitting the feature space into a set of non-overlapping
regions (subsets of values), and by then predicting the most likely value of the
dependent variable within each region. A classification tree represents a set
of nested logical if-then conditions on the values of the features variables that
allows for the prediction of the value of the dependent categorical variable
based on the observed values of the feature variables [4].

Neural Networks (NN)

• R library nnet

The package nnet provides methods for using feed-forward neural net-
works with a single hidden layer, and for multinomial log-linear models [2].

A feed-forward neural network is an artificial neural network where con-
nections between the units do not form a directed cycle. In this network,
the information moves in only one direction, forward, from the input nodes,
through the hidden nodes (if any) and to the output nodes. There are no
cycles or loops in the network [1].

6



Naive Bayes (NB)

• R library RWeka

The Naive Bayes classifier is constructed by using the training data to
estimate the probability of each class given the document feature values of
a new instance [5].

K-Nearest Neighbours (KNN)

• R library class

For each row of the test set, the K nearest (in Euclidean distance) train-
ing set vectors are found, and the classification is decided by majority vote,
with ties broken at random. If there are ties for the Kth nearest vector, all
candidates are included in the vote [3].

Support Vector Machines (SVM)

• R library e1071

The main principle of SVMs is to determine separators in the search space
which can best separate the different classes. The key in such classifiers is
to determine the optimal boundaries between the different classes and use
them for the purposes of classification [11].
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Results

In this chapter are presented the experimental results which were measured
using individual algorithms.

For the R command: info.terms < −findFreqTerms(dtm.mx, 200);
the count of terms is 20, as shown below.

[1] "barrels" "billion" "bpd" "crude" "dlrs"

[6] "energy" "gas" "march" "market" "mln"

[11] "oil" "opec" "pct" "price" "prices"

[16] "production" "reuter" "the" "tonnes" "wheat"

Furthermore the decision tree for these terms is displayed.

n= 378

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 378 145 crude (0 ,61640212 0 ,38359788)

2) wheat.t< 0,5 236 5 crude (0 ,97881356 0 ,02118644) *

3) wheat.t>=0,5 142 2 wheat (0 ,01408451 0 ,98591549) *

If the terms wheat and crude are removed the F1 score is decreased to
0.9547739 (the original score is 0,9853659, if all of the terms are taken into
account), but the richer tree is obtained. The tree shows more terms, which
are also important to distinguish chosen categories.

n= 378

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 378 145 crude (0.61640212 0.38359788)

2) oil.t>=0.5 222 9 crude (0.95945946 0.04054054) *

3) oil.t< 0.5 156 20 wheat (0.12820513 0.87179487)

6) reuter.t< 0.5 30 13 crude (0.56666667 0.43333333)

12) prices.t >=0.5 8 0 crude (1.00000000 0.00000000) *

13) prices.t< 0.5 22 9 wheat (0.40909091 0.59090909)

26) mln.t >=0.5 7 2 crude (0.71428571 0.28571429) *

27) mln.t< 0.5 15 4 wheat (0.26666667 0.73333333) *

7) reuter.t>=0.5 126 3 wheat (0.02380952 0.97619048) *
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The following table displays results for previously mentioned 20 at-
tributes. The best results are achieved using Decision Tree algorithm, the
Neural Networks achieve also very high score, while the worst results achieve
Naive Bayes. The difference between DT and NN is that NN have the best
possible precision, while recall obtains worser value, but almost exactly op-
posite values are achieved using Decision Tree.

Algorithm Accuracy Precision Recall F1

NB 0,8658537 0,9759036 0,8019802 0,8804348

SVM 0,9512195 0,9428571 0,980198 0,961165

KNN 0,9512195 0,960396 0,960396 0,960396

NN 0,9817073 1 0,970297 0,9849246

DT 0,9817073 0,9711538 1 0,9853659

For the R command: info.terms < −findFreqTerms(dtm.mx, 150);
the count of terms is 38.

Increasing the number of attributes are improved precision of NB and
recall of SVM, while precision of SVM has worse score.

Algorithm Accuracy Precision Recall F1

NB 0,8780488 1 0,8019802 0,8901099

SVM 0,945122 0,9181818 1 0,957346

KNN 0,9695122 0,98 0,970297 0,9751244

NN 0,9756098 1 0,960396 0,979798

DT 0,9817073 0,9711538 1 0,9853659

For the R command: info.terms < −findFreqTerms(dtm.mx, 100);
the count of terms is 72.

Next increasing of terms used in the classification improves score of NN,
especially the recall and consequently also the accuracy and F1 score. Fur-
thermore the score of NB is slightly improved and the precision and recall of
KNN decline in comparison with previous table. The values of DT remains
the same.

Algorithm Accuracy Precision Recall F1

NB 0,8963415 1 0,8316832 0,9081081

SVM 0,9268293 0,8938053 1 0,9439252

KNN 0,9573171 0,97 0,960396 0,9651741

NN 0,9939024 1 0,990099 0,9950249

DT 0,9817073 0,9711538 1 0,9853659
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For the R command: info.terms < −findFreqTerms(dtm.mx, 40); the
count of terms is 265.

The following table displays a significant increase of recall of NB and
greater decline of precision of SVM.

Algorithm Accuracy Precision Recall F1

NB 0,945122 1 0,9108911 0,9533679

SVM 0,8963415 0,862069 0,990099 0,921659

KNN 0,9390244 0,959596 0,9405941 0,95

NN 0,9939024 1 0,990099 0,9950249

DT 0,9817073 0,9711538 1 0,9853659

For the R command: info.terms < −findFreqTerms(dtm.mx, 10); the
count of terms is 1136.

In the last table are presented results for 1136 terms. The time taken
for training was appreciably longer than in previous experiments. The score
of NB and SVM is increased, while the score of KNN is decreased.

Algorithm Accuracy Precision Recall F1

NB 0,9573171 1 0,9306931 0,9641026

SVM 0,9573171 0,9351852 1 0,9665072

KNN 0,9207317 0,9230769 0,950495 0,9365854

NN 0,9939024 1 0,990099 0,9950249

DT 0,9817073 0,9711538 1 0,9853659

The graph displayed on the next page compares achieved F1 scores of
all tested algorithms depending on the number of terms.

10



19 37 72 264 1135
0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

Naive Bayes

Support Vector Machines

K-Nearest Neighbours

Neural Networks

Decision Trees



Conclusions

The goal of this work was the construction of several classifiers and their
comparison. At first the input data were loaded into the R and consequently
were applied the first 5 preprocessing methods and the resulting data were
divided into train and test sets. On such prepared data were launched
functions to rename terms to avoid conflicts with R commands. Obtained
data were several times used for processing by command for identification
of frequent terms and by commands for training, testing and evaluation
models. After all that processing the presented results were obtained.

The results indicate that Naive Bayes works better with a larger number
of attributes and is not able to take advantage from small amount of infor-
mative terms, while for K-Nearest Neighbours a larger number of attributes
is disadvantage, if there is small amount of informative terms.

Decision Trees are able to detect informative terms in the small or large
amount of terms.

Neural Networks behaves very well as with a small number of attributes,
so with a large number of attributes, however it seem that too small amount
of terms, is not the best choice for this algorithms.

Support Vector Machines achieved the best score in the experiment with
the biggest number of attributes although relatively high scores was also
with small amount of attributes.
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Appendix

R source code:

library(tm);

# Get the corpus for "wheat" and "crude" documents

wheat <- Corpus(DirSource("wheat"), readerControl=list(

reader=readPlain ,language="en_US"));

crude <- Corpus(DirSource("crude"), readerControl=list(

reader=readPlain ,language="en_US"));

# Get corresponding train and test sets (70% and 30%

respectively)

lg <- length(wheat);

wheat.train <- wheat [1:as.integer(lg*0.7)];

wheat.test <- wheat[(as.integer(lg*0.7) +1):lg];

lg <- length(crude);

crude.train <- crude [1:as.integer(lg*0.7)];

crude.test <- crude[(as.integer(lg*0.7) +1):lg];

l1 <- length(wheat.train);

l2 <- length(crude.train);

l3 <- length(wheat.test);

l4 <- length(crude.test);

# Merge corpora into one collection

docs <- c(wheat.train , crude.train , wheat.test , crude.test);

# Pre -processing

docs.p <- docs;

docs.p <- tm_map(docs.p, stripWhitespace);

docs.p <- tm_map(docs.p, tolower);

docs.p <- tm_map(docs.p, removeWords , stopwords("en"));

docs.p <- tm_map(docs.p, removePunctuation);

docs.p <- tm_map(docs.p, removeNumbers);

# Create a Document -Term matrix

dtm.mx <- DocumentTermMatrix(docs.p, control=list(weighting=

weightTf));

# Convert the Document -Term matrix into a data frame and

append class information
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dtm <- as.data.frame(inspect(dtm.mx));

rownames(dtm)<- 1:nrow(dtm.mx);

class <- c(rep("wheat",l1), rep("crude",l2), rep("wheat",l3)

, rep("crude",l4));

dtm <- cbind(dtm , class);

last.col <- length(dtm);

# Prepare data for training and testing the classifier

dtm.tr <- dtm [1:(l1+l2), 1:last.col];

dtm.ts <- dtm[(l1+l2+1):(l1+l2+l3+l4) ,1:(last.col -1)];

rename.terms.in.dtm <- function(dtm) {

for (i in 1: length(dtm)) {

cat("replaced to ", paste(colnames(dtm)[i],".t", sep

=""), "\n")

colnames(dtm)[i] <- paste(colnames(dtm)[i],".t", sep

="")

} #end for i

return(dtm)

}

dtm.tr <- rename.terms.in.dtm(dtm.tr);

dtm.ts <- rename.terms.in.dtm(dtm.ts);

# Identification of informative terms

info.terms <- findFreqTerms(dtm.mx, 10);

cat("Number of features:", length(info.terms) - 1, "\n");

rename.terms.in.list <- function(list) {

for (i in 1: length(list)) {

#cat(" replaced", list[i], "at", i, "with", paste(

list[i],".t", sep =""), "\n")

list[i]<- paste(list[i],".t", sep="")

} #end for i

# list <- list[list != "crude.t"];

# list <- list[list != "wheat.t"];

return(list)

}

# Rename terms to avoid errors in classification

info.terms <- rename.terms.in.list(info.terms);

# Train the classifier

names.tr <- paste(info.terms , collapse=’+’);

class.formula <- as.formula(paste(’class.t’, names.tr , sep=’

~’));

class.ts <- dtm[(l1+l2+1):(l1+l2+l3+l4),last.col];

class.tr <- dtm [1:(l1+l2),last.col];

library(rpart)

dt <- rpart(class.formula , dtm.tr)

#Prediction

preds.dt <- predict(dt , dtm.ts , type="class")
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#Construct a confusion matrix:

conf.mx.dt <- table(class.ts, preds.dt)

#Percentage of prediction errors

error.rate.dt <- (sum(conf.mx.dt) - sum(diag(conf.mx.dt))) /

sum(conf.mx.dt)

#Evaluation of classifier

tp.dt <- conf.mx.dt[1,1] #(true positive)

fp.dt <- conf.mx.dt[2,1] #(false positive)

tn.dt <- conf.mx.dt[2,2] #(true negative)

fn.dt <- conf.mx.dt[1,2] #(false negative)

recall.dt = tp.dt / (tp.dt + fn.dt)

precision.dt = tp.dt / (tp.dt + fp.dt)

f1.dt = 2 * precision.dt * recall.dt / (precision.dt +

recall.dt)

accuracy.dt = (tp.dt + tn.dt) / (tp.dt + fp.dt + tn.dt + fn.

dt)

library(nnet)

nnet.classifier <- nnet(class.formula , data = dtm.tr, size

=2, rang =0.1, decay =5e-4, maxit =200)

preds.nn <- predict(nnet.classifier , dtm.ts , type="class")

conf.mx.nn <- table(class.ts, preds.nn)

error.rate.nn <- (sum(conf.mx.nn) - sum(diag(conf.mx.nn))) /

sum(conf.mx.nn)

#Evaluation of classifier

tp.nn <- conf.mx.nn[1,1] #(true positive)

fp.nn <- conf.mx.nn[2,1] #(false positive)

tn.nn <- conf.mx.nn[2,2] #(true negative)

fn.nn <- conf.mx.nn[1,2] #(false negative)

recall.nn = tp.nn / (tp.nn + fn.nn)

precision.nn = tp.nn / (tp.nn + fp.nn)

f1.nn = 2 * precision.nn * recall.nn / (precision.nn +

recall.nn)

accuracy.nn = (tp.nn + tn.nn) / (tp.nn + fp.nn + tn.nn + fn.

nn)

library(class)

preds.knn <- knn(dtm.tr[, info.terms], dtm.ts[, info.terms],

class.tr, k=1)

conf.mx.knn <- table(class.ts, preds.knn)

error.rate.knn <- (sum(conf.mx.knn) - sum(diag(conf.mx.knn))

) / sum(conf.mx.knn)

#Evaluation of classifier

tp.knn <- conf.mx.knn[1,1] #(true positive)

fp.knn <- conf.mx.knn[2,1] #(false positive)

tn.knn <- conf.mx.knn[2,2] #(true negative)

fn.knn <- conf.mx.knn[1,2] #(false negative)

recall.knn = tp.knn / (tp.knn + fn.knn)

precision.knn = tp.knn / (tp.knn + fp.knn)

f1.knn = 2 * precision.knn * recall.knn / (precision.knn +

recall.knn)

accuracy.knn = (tp.knn + tn.knn) / (tp.knn + fp.knn + tn.knn

+ fn.knn)
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library(e1071)

svm.classifier <- svm(class.formula , dtm.tr)

preds.svm <- predict(svm.classifier , dtm.ts)

conf.mx.svm <- table(class.ts, preds.svm)

error.rate.svm <- (sum(conf.mx.svm) - sum(diag(conf.mx.svm))

) / sum(conf.mx.svm)

#Evaluation of classifier

tp.svm <- conf.mx.svm[1,1] #(true positive)

fp.svm <- conf.mx.svm[2,1] #(false positive)

tn.svm <- conf.mx.svm[2,2] #(true negative)

fn.svm <- conf.mx.svm[1,2] #(false negative)

recall.svm = tp.svm / (tp.svm + fn.svm)

precision.svm = tp.svm / (tp.svm + fp.svm)

f1.svm = 2 * precision.svm * recall.svm / (precision.svm +

recall.svm)

accuracy.svm = (tp.svm + tn.svm) / (tp.svm + fp.svm + tn.svm

+ fn.svm)

library(RWeka)

NB<-make_Weka_classifier("weka/classifiers/bayes/NaiveBayes"

)

nb.classifier <-NB(class.formula , dtm.tr)

preds.nb<-predict(nb.classifier , dtm.ts)

conf.mx.nb<-table(class.ts, preds.nb)

error.rate.nb <- (sum(conf.mx.nb) - sum(diag(conf.mx.nb))) /

sum(conf.mx.nb)

#Evaluation of classifier

tp.nb <- conf.mx.nb[1,1] #(true positive)

fp.nb <- conf.mx.nb[2,1] #(false positive)

tn.nb <- conf.mx.nb[2,2] #(true negative)

fn.nb <- conf.mx.nb[1,2] #(false negative)

recall.nb = tp.nb / (tp.nb + fn.nb)

precision.nb = tp.nb / (tp.nb + fp.nb)

f1.nb = 2 * precision.nb * recall.nb / (precision.nb +

recall.nb)

accuracy.nb = (tp.nb + tn.nb) / (tp.nb + fp.nb + tn.nb + fn.

nb)

cat("\nNB: Conf. Matrix:", conf.mx.nb , "\n", "Error rate: ",

error.rate.nb , "\n", "Accuracy: ", accuracy.nb , "\n", "

Precision: ", precision.nb , "\n", "Recall: ", recall.nb ,

"\n", "F1: ", f1.nb , "\n");

cat("\nSVM: Conf. Matrix:", conf.mx.svm , "\n", "Error rate:

", error.rate.svm , "\n", "Accuracy: ", accuracy.svm , "\n

", "Precision: ", precision.svm , "\n", "Recall: ",

recall.svm , "\n", "F1: ", f1.svm , "\n");

cat("\nKNN: Conf. Matrix:", conf.mx.knn , "\n", "Error rate:

", error.rate.knn , "\n", "Accuracy: ", accuracy.knn , "\n

", "Precision: ", precision.knn , "\n", "Recall: ",

recall.knn , "\n", "F1: ", f1.knn , "\n");
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cat("\nNN: Conf. Matrix:", conf.mx.nn , "\n", "Error rate: ",

error.rate.nn , "\n", "Accuracy: ", accuracy.nn , "\n", "

Precision: ", precision.nn , "\n", "Recall: ", recall.nn ,

"\n", "F1: ", f1.nn , "\n");

cat("\nDT: Conf. Matrix:", conf.mx.dt , "\n", "Error rate: ",

error.rate.dt , "\n", "Accuracy: ", accuracy.dt , "\n", "

Precision: ", precision.dt , "\n", "Recall: ", recall.dt ,

"\n", "F1: ", f1.dt , "\n");
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